ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.03406
6
0

Combining imagination and heuristics to learn strategies that generalize

10 September 2018
Erik J Peterson
Necati Alp Muyesser
Timothy D. Verstynen
Kyle Dunovan
ArXivPDFHTML
Abstract

Deep reinforcement learning can match or exceed human performance in stable contexts, but with minor changes to the environment artificial networks, unlike humans, often cannot adapt. Humans rely on a combination of heuristics to simplify computational load and imagination to extend experiential learning to new and more challenging environments. Motivated by theories of the hierarchical organization of the human prefrontal networks, we have developed a model of hierarchical reinforcement learning that combines both heuristics and imagination into a stumbler-strategist network. We test performance of this network using Wythoff's game, a gridworld environment with a known optimal strategy. We show that a heuristic labeling of each position as hot or cold, combined with imagined play, both accelerates learning and promotes transfer to novel games, while also improving model interpretability.

View on arXiv
Comments on this paper