ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.04040
371
185
v1v2v3 (latest)

Solving Imperfect-Information Games via Discounted Regret Minimization

11 September 2018
Noam Brown
Tuomas Sandholm
ArXiv (abs)PDFHTML
Abstract

Counterfactual regret minimization (CFR) is a family of iterative algorithms that are the most popular and, in practice, fastest approach to approximately solving large imperfect-information games. In this paper we introduce novel CFR variants that 1) discount regrets from earlier iterations in various ways (in some cases differently for positive and negative regrets), 2) reweight iterations in various ways to obtain the output strategies, 3) use a non-standard regret minimizer and/or 4) leverage "optimistic regret matching". They lead to dramatically improved performance in many settings. For one, we introduce a variant that outperforms CFR+, the prior state-of-the-art algorithm, in every game tested, including large-scale realistic settings. CFR+ is a formidable benchmark: no other algorithm has been able to outperform it. Finally, we show that, unlike CFR+, many of the important new variants are compatible with modern imperfect-information-game pruning techniques and one is also compatible with sampling in the game tree.

View on arXiv
Comments on this paper