ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.04098
14
62

On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions

11 September 2018
Yusuke Tsuzuku
Issei Sato
    AAML
ArXivPDFHTML
Abstract

Data-agnostic quasi-imperceptible perturbations on inputs are known to degrade recognition accuracy of deep convolutional networks severely. This phenomenon is considered to be a potential security issue. Moreover, some results on statistical generalization guarantees indicate that the phenomenon can be a key to improve the networks' generalization. However, the characteristics of the shared directions of such harmful perturbations remain unknown. Our primal finding is that convolutional networks are sensitive to the directions of Fourier basis functions. We derived the property by specializing a hypothesis of the cause of the sensitivity, known as the linearity of neural networks, to convolutional networks and empirically validated it. As a by-product of the analysis, we propose an algorithm to create shift-invariant universal adversarial perturbations available in black-box settings.

View on arXiv
Comments on this paper