ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.04187
16
11

Fourier-Domain Optimization for Image Processing

11 September 2018
Majed El Helou
Frederike Dumbgen
R. Achanta
Sabine Süsstrunk
ArXivPDFHTML
Abstract

Image optimization problems encompass many applications such as spectral fusion, deblurring, deconvolution, dehazing, matting, reflection removal and image interpolation, among others. With current image sizes in the order of megabytes, it is extremely expensive to run conventional algorithms such as gradient descent, making them unfavorable especially when closed-form solutions can be derived and computed efficiently. This paper explains in detail the framework for solving convex image optimization and deconvolution in the Fourier domain. We begin by explaining the mathematical background and motivating why the presented setups can be transformed and solved very efficiently in the Fourier domain. We also show how to practically use these solutions, by providing the corresponding implementations. The explanations are aimed at a broad audience with minimal knowledge of convolution and image optimization. The eager reader can jump to Section 3 for a footprint of how to solve and implement a sample optimization function, and Section 5 for the more complex cases.

View on arXiv
Comments on this paper