ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.05296
12
94

Skeleton-to-Response: Dialogue Generation Guided by Retrieval Memory

14 September 2018
Deng Cai
Yan Wang
Victoria Bi
Zhaopeng Tu
Xiaojiang Liu
Wai Lam
Shuming Shi
    RALM
ArXivPDFHTML
Abstract

For dialogue response generation, traditional generative models generate responses solely from input queries. Such models rely on insufficient information for generating a specific response since a certain query could be answered in multiple ways. Consequentially, those models tend to output generic and dull responses, impeding the generation of informative utterances. Recently, researchers have attempted to fill the information gap by exploiting information retrieval techniques. When generating a response for a current query, similar dialogues retrieved from the entire training data are considered as an additional knowledge source. While this may harvest massive information, the generative models could be overwhelmed, leading to undesirable performance. In this paper, we propose a new framework which exploits retrieval results via a skeleton-then-response paradigm. At first, a skeleton is generated by revising the retrieved responses. Then, a novel generative model uses both the generated skeleton and the original query for response generation. Experimental results show that our approaches significantly improve the diversity and informativeness of the generated responses.

View on arXiv
Comments on this paper