ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.06432
34
5
v1v2 (latest)

Node Classification for Signed Social Networks Using Diffuse Interface Methods

7 September 2018
Pedro Mercado
J. Bosch
Martin Stoll
ArXiv (abs)PDFHTML
Abstract

Signed networks contain both positive and negative kinds of interactions like friendship and enmity. The task of node classification in non-signed graphs has proven to be beneficial in many real world applications, yet extensions to signed networks remain largely unexplored. In this paper we introduce the first analysis of node classification in signed social networks via diffuse interface methods based on the Ginzburg-Landau functional together with different extensions of the graph Laplacian to signed networks. We show that blending the information from both positive and negative interactions leads to performance improvement in real signed social networks, consistently outperforming the current state of the art.

View on arXiv
Comments on this paper