ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.06858
18
144

FRAGE: Frequency-Agnostic Word Representation

18 September 2018
Chengyue Gong
Di He
Xu Tan
Tao Qin
Liwei Wang
Tie-Yan Liu
    OOD
ArXivPDFHTML
Abstract

Continuous word representation (aka word embedding) is a basic building block in many neural network-based models used in natural language processing tasks. Although it is widely accepted that words with similar semantics should be close to each other in the embedding space, we find that word embeddings learned in several tasks are biased towards word frequency: the embeddings of high-frequency and low-frequency words lie in different subregions of the embedding space, and the embedding of a rare word and a popular word can be far from each other even if they are semantically similar. This makes learned word embeddings ineffective, especially for rare words, and consequently limits the performance of these neural network models. In this paper, we develop a neat, simple yet effective way to learn \emph{FRequency-AGnostic word Embedding} (FRAGE) using adversarial training. We conducted comprehensive studies on ten datasets across four natural language processing tasks, including word similarity, language modeling, machine translation and text classification. Results show that with FRAGE, we achieve higher performance than the baselines in all tasks.

View on arXiv
Comments on this paper