ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.07447
16
6

A Coupled Evolutionary Network for Age Estimation

20 September 2018
Peipei Li
Yibo Hu
R. He
Zhenan Sun
    CML
ArXivPDFHTML
Abstract

Age estimation of unknown persons is a challenging pattern analysis task due to the lacking of training data and various aging mechanisms for different people. Label distribution learning-based methods usually make distribution assumptions to simplify age estimation. However, age label distributions are often complex and difficult to be modeled in a parameter way. Inspired by the biological evolutionary mechanism, we propose a Coupled Evolutionary Network (CEN) with two concurrent evolutionary processes: evolutionary label distribution learning and evolutionary slack regression. Evolutionary network learns and refines age label distributions in an iteratively learning way. Evolutionary label distribution learning adaptively learns and constantly refines the age label distributions without making strong assumptions on the distribution patterns. To further utilize the ordered and continuous information of age labels, we accordingly propose an evolutionary slack regression to convert the discrete age label regression into the continuous age interval regression. Experimental results on Morph, ChaLearn15 and MegaAge-Asian datasets show the superiority of our method.

View on arXiv
Comments on this paper