ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.08229
22
2

Image Denoising and Super-Resolution using Residual Learning of Deep Convolutional Network

21 September 2018
Rohit Pardasani
Utkarsh Shreemali
    SupR
ArXivPDFHTML
Abstract

Image super-resolution and denoising are two important tasks in image processing that can lead to improvement in image quality. Image super-resolution is the task of mapping a low resolution image to a high resolution image whereas denoising is the task of learning a clean image from a noisy input. We propose and train a single deep learning network that we term as SuRDCNN (super-resolution and denoising convolutional neural network), to perform these two tasks simultaneously . Our model nearly replicates the architecture of existing state-of-the-art deep learning models for super-resolution and denoising. We use the proven strategy of residual learning, as supported by state-of-the-art networks in this domain. Our trained SuRDCNN is capable of super-resolving image in the presence of Gaussian noise, Poisson noise or any random combination of both of these noises.

View on arXiv
Comments on this paper