ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.09810
59
20
v1v2v3 (latest)

Robot Bed-Making: Deep Transfer Learning Using Depth Sensing of Deformable Fabric

26 September 2018
Daniel Seita
Nawid Jamali
Michael Laskey
A. Tanwani
R. Berenstein
Prakash Baskaran
Soshi Iba
John F. Canny
Ken Goldberg
ArXiv (abs)PDFHTML
Abstract

Bed-making is a common task well-suited for home robots since it is tolerant to error and not time-critical. Bed-making can also be difficult for senior citizens and those with limited mobility due to the bending and reaching movements required. Autonomous bed-making combines multiple challenges in robotics: perception in unstructured environments, deformable object manipulation, transfer learning, and sequential decision making. We formalize the bed-making problem as one of maximizing surface coverage with a blanket, and explore algorithmic approaches that use deep learning on depth images to be invariant to the color and pattern of the blankets. We train two networks: one to identify a corner of the blanket and another to determine when to transition to the other side of the bed. Using the first network, the robot grasps at its estimate of the blanket corner and then pulls it to the appropriate corner of the bed frame. The second network estimates if the robot has sufficiently covered one side and can transition to the other, or if it should attempt another grasp from the same side. We evaluate with two robots, the Toyota HSR and the Fetch, and three blankets. Using 2018 and 654 depth images for training the grasp and transition networks respectively, experiments with a quarter-scale twin bed achieve an average of 91.7% blanket coverage, nearly matching human supervisors with 95.0% coverage. Data is available at https://sites.google.com/view/bed-make.

View on arXiv
Comments on this paper