ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.11074
11
18

Robot Representation and Reasoning with Knowledge from Reinforcement Learning

28 September 2018
Keting Lu
Shiqi Zhang
Peter Stone
Xiaoping Chen
    OffRL
ArXivPDFHTML
Abstract

Reinforcement learning (RL) agents aim at learning by interacting with an environment, and are not designed for representing or reasoning with declarative knowledge. Knowledge representation and reasoning (KRR) paradigms are strong in declarative KRR tasks, but are ill-equipped to learn from such experiences. In this work, we integrate logical-probabilistic KRR with model-based RL, enabling agents to simultaneously reason with declarative knowledge and learn from interaction experiences. The knowledge from humans and RL is unified and used for dynamically computing task-specific planning models under potentially new environments. Experiments were conducted using a mobile robot working on dialog, navigation, and delivery tasks. Results show significant improvements, in comparison to existing model-based RL methods.

View on arXiv
Comments on this paper