ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.00421
16
2
v1v2 (latest)

Nth Absolute Root Mean Error

30 September 2018
S. Choudhury
Shashank Pandey
    AI4CE
ArXiv (abs)PDFHTML
Abstract

Neural network training process takes long time when the size of training data is huge, without the large set of training values the neural network is unable to learn features. This dilemma between time and size of data is often solved using fast GPUs, but we present a better solution for a subset of those problems. To reduce the time for training a regression model using neural network we introduce a loss function called Nth Absolute Root Mean Error (NARME). It helps to train regression models much faster compared to other existing loss functions. Experiments show that in most use cases NARME reduces the required number of epochs to almost one-tenth of that required by other commonly used loss functions, and also achieves great accuracy in the small amount of time in which it was trained.

View on arXiv
Comments on this paper