ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01594
80
406
v1v2 (latest)

HOLMES: Real-time APT Detection through Correlation of Suspicious Information Flows

3 October 2018
Sadegh M. Milajerdi
Rigel Gjomemo
Birhanu Eshete
R. Sekar
V. Venkatakrishnan
ArXiv (abs)PDFHTML
Abstract

In this paper, we present HOLMES, a system that implements a new approach to the detection of Advanced and Persistent Threats (APTs). HOLMES is inspired by several case studies of real-world APTs that highlight some common goals of APT actors. In a nutshell, HOLMES aims to produce a detection signal that indicates the presence of a coordinated set of activities that are part of an APT campaign. One of the main challenges addressed by our approach involves developing a suite of techniques that make the detection signal robust and reliable. At a high-level, the techniques we develop effectively leverage the correlation between suspicious information flows that arise during an attacker campaign. In addition to its detection capability, HOLMES is also able to generate a high-level graph that summarizes the attacker's actions in real-time. This graph can be used by an analyst for an effective cyber response. An evaluation of our approach against some real-world APTs indicates that HOLMES can detect APT campaigns with high precision and low false alarm rate. The compact high-level graphs produced by HOLMES effectively summarizes an ongoing attack campaign and can assist real-time cyber-response operations.

View on arXiv
Comments on this paper