ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.02977
9
76

Fast Object Learning and Dual-arm Coordination for Cluttered Stowing, Picking, and Packing

6 October 2018
Max Schwarz
Christian Lenz
Germán Martín García
Seongyong Koo
Arul Selvam Periyasamy
M. Schreiber
Sven Behnke
ArXivPDFHTML
Abstract

Robotic picking from cluttered bins is a demanding task, for which Amazon Robotics holds challenges. The 2017 Amazon Robotics Challenge (ARC) required stowing items into a storage system, picking specific items, and packing them into boxes. In this paper, we describe the entry of team NimbRo Picking. Our deep object perception pipeline can be quickly and efficiently adapted to new items using a custom turntable capture system and transfer learning. It produces high-quality item segments, on which grasp poses are found. A planning component coordinates manipulation actions between two robot arms, minimizing execution time. The system has been demonstrated successfully at ARC, where our team reached second places in both the picking task and the final stow-and-pick task. We also evaluate individual components.

View on arXiv
Comments on this paper