ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.05682
16
77

Building Dynamic Knowledge Graphs from Text using Machine Reading Comprehension

12 October 2018
Rajarshi Das
Tsendsuren Munkhdalai
Xingdi Yuan
Adam Trischler
Andrew McCallum
ArXivPDFHTML
Abstract

We propose a neural machine-reading model that constructs dynamic knowledge graphs from procedural text. It builds these graphs recurrently for each step of the described procedure, and uses them to track the evolving states of participant entities. We harness and extend a recently proposed machine reading comprehension (MRC) model to query for entity states, since these states are generally communicated in spans of text and MRC models perform well in extracting entity-centric spans. The explicit, structured, and evolving knowledge graph representations that our model constructs can be used in downstream question answering tasks to improve machine comprehension of text, as we demonstrate empirically. On two comprehension tasks from the recently proposed PROPARA dataset (Dalvi et al., 2018), our model achieves state-of-the-art results. We further show that our model is competitive on the RECIPES dataset (Kiddon et al., 2015), suggesting it may be generally applicable. We present some evidence that the model's knowledge graphs help it to impose commonsense constraints on its predictions.

View on arXiv
Comments on this paper