ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.06226
21
1
v1v2 (latest)

Fixed point characterizations of continuous univariate probability distributions and their applications

15 October 2018
Steffen Betsch
B. Ebner
ArXiv (abs)PDFHTML
Abstract

By extrapolating the explicit formula of the zero-bias distribution occurring in the context of Stein's method, we construct characterization identities for a large class of absolutely continuous univariate distributions. Instead of trying to derive characterizing distributional transformations that inherit certain structures for the use in further theoretic endeavours, we focus on explicit representations given through a formula for the density- or distribution function. The results we establish with this ambition feature immediate applications in the area of goodness-of-fit testing. We draw up a blueprint for the construction of tests of fit that include procedures for many distributions for which little (if any) practicable tests are known. To illustrate this last point, we construct a test for the Burr Type XII distribution for which, to our knowledge, not a single test is known aside from the classical universal procedures.

View on arXiv
Comments on this paper