Automatic understanding of domain specific texts in order to extract useful
relationships for later use is a non-trivial task. One such relationship would
be between railroad accidents' causes and their correspondent descriptions in
reports. From 2001 to 2016 rail accidents in the U.S. cost more than 4.6B.RailroadsinvolvedinaccidentsarerequiredtosubmitanaccidentreporttotheFederalRailroadAdministration(FRA).Thesereportscontainavarietyoffixedfieldentriesincludingprimarycauseoftheaccidents(acodedvariablewith389values)aswellasanarrativefieldwhichisashorttextdescriptionoftheaccident.Althoughthesenarrativesprovidemoreinformationthanafixedfieldentry,theterminologiesusedinthesereportsarenoteasytounderstandbyanon−expertreader.Therefore,providinganassistingmethodtofillintheprimarycausefromsuchdomainspecifictexts(narratives)wouldhelptolabeltheaccidentswithmoreaccuracy.Anotherimportantquestionfortransportationsafetyiswhetherthereportedaccidentcauseisconsistentwithnarrativedescription.Toaddressthesequestions,weapplieddeeplearningmethodstogetherwithpowerfulwordembeddingssuchasWord2VecandGloVetoclassifyaccidentcausevaluesfortheprimarycausefieldusingthetextinthenarratives.Theresultsshowthatsuchapproachescanbothaccuratelyclassifyaccidentcausesbasedonreportnarrativesandfindimportantinconsistenciesinaccidentreporting.