STACL: Simultaneous Translation with Implicit Anticipation and Controllable Latency using Prefix-to-Prefix Framework
Mingbo Ma
Liang Huang
Hao Xiong
Renjie Zheng
Kaibo Liu
Baigong Zheng
Chuanqiang Zhang
Zhongjun He
Hairong Liu
Xing Li
Hua-Hong Wu
Haifeng Wang

Abstract
Simultaneous translation, which translates sentences before they are finished, is useful in many scenarios but is notoriously difficult due to word-order differences. While the conventional seq-to-seq framework is only suitable for full-sentence translation, we propose a novel prefix-to-prefix framework for simultaneous translation that implicitly learns to anticipate in a single translation model. Within this framework, we present a very simple yet surprisingly effective wait-k policy trained to generate the target sentence concurrently with the source sentence, but always k words behind. Experiments show our strategy achieves low latency and reasonable quality (compared to full-sentence translation) on 4 directions: zh<->en and de<->en.
View on arXivComments on this paper