ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09580
17
4

A Fully Attention-Based Information Retriever

22 October 2018
Alvaro H. C. Correia
Jorge Luiz Moreira Silva
Thiago de C. Martins
Fabio Gagliardi Cozman
ArXivPDFHTML
Abstract

Recurrent neural networks are now the state-of-the-art in natural language processing because they can build rich contextual representations and process texts of arbitrary length. However, recent developments on attention mechanisms have equipped feedforward networks with similar capabilities, hence enabling faster computations due to the increase in the number of operations that can be parallelized. We explore this new type of architecture in the domain of question-answering and propose a novel approach that we call Fully Attention Based Information Retriever (FABIR). We show that FABIR achieves competitive results in the Stanford Question Answering Dataset (SQuAD) while having fewer parameters and being faster at both learning and inference than rival methods.

View on arXiv
Comments on this paper