ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09751
20
0

Analysis of Atomistic Representations Using Weighted Skip-Connections

23 October 2018
K. Nicoli
Pan Kessel
M. Gastegger
Kristof T. Schütt
ArXivPDFHTML
Abstract

In this work, we extend the SchNet architecture by using weighted skip connections to assemble the final representation. This enables us to study the relative importance of each interaction block for property prediction. We demonstrate on both the QM9 and MD17 dataset that their relative weighting depends strongly on the chemical composition and configurational degrees of freedom of the molecules which opens the path towards a more detailed understanding of machine learning models for molecules.

View on arXiv
Comments on this paper