Strong laws of large numbers are established for random fields with weak or strong dependence. These limit theorems are applicable to random fields with heavy-tailed distributions including fractional stable random fields. The conditions for SLLN are described in terms of the -th moments of the partial sums of the random fields, which are convenient to verify. The main technical tool in this paper is a maximal inequality for the moments of partial sums of random fields that extends the technique of Levental, Chobanyan and Salehi \cite{chobanyan-l-s} for a sequence of random variables indexed by a one-parameter.
View on arXiv