ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.11319
165
25
v1v2v3v4 (latest)

HYPE: Massive Hypergraph Partitioning with Neighborhood Expansion

26 October 2018
C. Mayer
R. Mayer
Sukanya Bhowmik
Lukas Epple
Kurt Rothermel
ArXiv (abs)PDFHTML
Abstract

Many important real-world applications-such as social networks or distributed data bases-can be modeled as hypergraphs. In such a model, vertices represent entities-such as users or data records-whereas hyperedges model a group membership of the vertices-such as the authorship in a specific topic or the membership of a data record in a specific replicated shard. To optimize such applications, we need an efficient and effective solution to the NP-hard balanced k-way hypergraph partitioning problem. However, existing hypergraph partitioners that scale to very large graphs do not effectively exploit the hypergraph structure when performing the partitioning decisions. We propose HYPE, a hypergraph partitionier that exploits the neighborhood relations between vertices in the hypergraph using an efficient implementation of neighborhood expansion. HYPE improves partitioning quality by up to 95% and reduces runtime by up to 39% compared to the state of the art.

View on arXiv
Comments on this paper