ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.12187
76
73
v1v2 (latest)

End-to-end music source separation: is it possible in the waveform domain?

29 October 2018
Francesc Lluís
Jordi Pons
Xavier Serra
ArXiv (abs)PDFHTML
Abstract

Most of the currently successful source separation techniques use the magnitude spectrogram as input, and are therefore by default omitting part of the signal: the phase. To avoid omitting potentially useful information, we study the viability of using end-to-end models for music source separation --- which take into account all the information available in the raw audio signal, including the phase. Although during the last decades end-to-end music source separation has been considered almost unattainable, our results confirm that waveform-based models can perform similarly (if not better) than a spectrogram-based deep learning model. Namely: a Wavenet-based model we propose and Wave-U-Net can outperform DeepConvSep, a recent spectrogram-based deep learning model.

View on arXiv
Comments on this paper