ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.12620
8
12

Towards End-to-end Automatic Code-Switching Speech Recognition

30 October 2018
Genta Indra Winata
Andrea Madotto
Chien-Sheng Wu
Pascale Fung
ArXivPDFHTML
Abstract

Speech recognition in mixed language has difficulties to adapt end-to-end framework due to the lack of data and overlapping phone sets, for example in words such as "one" in English and "w\`an" in Chinese. We propose a CTC-based end-to-end automatic speech recognition model for intra-sentential English-Mandarin code-switching. The model is trained by joint training on monolingual datasets, and fine-tuning with the mixed-language corpus. During the decoding process, we apply a beam search and combine CTC predictions and language model score. The proposed method is effective in leveraging monolingual corpus and detecting language transitions and it improves the CER by 5%.

View on arXiv
Comments on this paper