ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00535
50
9

High Dimensional Robust Inference for Cox Regression Models

1 November 2018
S. Kong
Zhuqing Yu
Xianyang Zhang
Guang Cheng
ArXiv (abs)PDFHTML
Abstract

We consider high-dimensional inference for potentially misspecified Cox proportional hazard models based on low dimensional results by Lin and Wei [1989]. A de-sparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo-true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (non-sparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.

View on arXiv
Comments on this paper