ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.01437
16
37

QuSecNets: Quantization-based Defense Mechanism for Securing Deep Neural Network against Adversarial Attacks

4 November 2018
Faiq Khalid
Hassan Ali
Hammad Tariq
Muhammad Abdullah Hanif
Semeen Rehman
Rehan Ahmed
Muhammad Shafique
    AAML
    MQ
ArXivPDFHTML
Abstract

Adversarial examples have emerged as a significant threat to machine learning algorithms, especially to the convolutional neural networks (CNNs). In this paper, we propose two quantization-based defense mechanisms, Constant Quantization (CQ) and Trainable Quantization (TQ), to increase the robustness of CNNs against adversarial examples. CQ quantizes input pixel intensities based on a "fixed" number of quantization levels, while in TQ, the quantization levels are "iteratively learned during the training phase", thereby providing a stronger defense mechanism. We apply the proposed techniques on undefended CNNs against different state-of-the-art adversarial attacks from the open-source \textit{Cleverhans} library. The experimental results demonstrate 50%-96% and 10%-50% increase in the classification accuracy of the perturbed images generated from the MNIST and the CIFAR-10 datasets, respectively, on commonly used CNN (Conv2D(64, 8x8) - Conv2D(128, 6x6) - Conv2D(128, 5x5) - Dense(10) - Softmax()) available in \textit{Cleverhans} library.

View on arXiv
Comments on this paper