ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03700
62
5
v1v2 (latest)

A Comparison of Lattice-free Discriminative Training Criteria for Purely Sequence-Trained Neural Network Acoustic Models

8 November 2018
Chao Weng
Manway Liu
ArXiv (abs)PDFHTML
Abstract

In this work, three lattice-free (LF) discriminative training criteria for purely sequence-trained neural network acoustic models are compared on LVCSR tasks, namely maximum mutual information (MMI), boosted maximum mutual information (bMMI) and state-level minimum Bayes risk (sMBR). We demonstrate that, analogous to LF-MMI, a neural network acoustic model can also be trained from scratch using LF-bMMI or LF-sMBR criteria respectively without the need of cross-entropy pre-training. Furthermore, experimental results on Switchboard-300hrs and Switchboard+Fisher-2100hrs datasets show that models trained with LF-bMMI consistently outperform those trained with plain LF-MMI and achieve a relative word error rate (WER) reduction of 5% over competitive temporal convolution projected LSTM (TDNN-LSTMP) LF-MMI baselines.

View on arXiv
Comments on this paper