ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04770
17
133

Packing Sparse Convolutional Neural Networks for Efficient Systolic Array Implementations: Column Combining Under Joint Optimization

7 November 2018
H. T. Kung
Bradley McDanel
S. Zhang
ArXivPDFHTML
Abstract

This paper describes a novel approach of packing sparse convolutional neural networks for their efficient systolic array implementations. By combining subsets of columns in the original filter matrix associated with a convolutional layer, we increase the utilization efficiency of the systolic array substantially (e.g., ~4x) due to the increased density of nonzeros in the resulting packed filter matrix. In combining columns, for each row, all filter weights but one with the largest magnitude are pruned. We retrain the remaining weights to preserve high accuracy. We demonstrate that in mitigating data privacy concerns the retraining can be accomplished with only fractions of the original dataset (e.g., 10\% for CIFAR-10). We study the effectiveness of this joint optimization for both high utilization and classification accuracy with ASIC and FPGA designs based on efficient bit-serial implementations of multiplier-accumulators. We present analysis and empirical evidence on the superior performance of our column combining approach against prior arts under metrics such as energy efficiency (3x) and inference latency (12x).

View on arXiv
Comments on this paper