ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04989
9
78

OriNet: A Fully Convolutional Network for 3D Human Pose Estimation

12 November 2018
Chenxu Luo
Xiao Chu
Alan Yuille
    3DH
ArXivPDFHTML
Abstract

In this paper, we propose a fully convolutional network for 3D human pose estimation from monocular images. We use limb orientations as a new way to represent 3D poses and bind the orientation together with the bounding box of each limb region to better associate images and predictions. The 3D orientations are modeled jointly with 2D keypoint detections. Without additional constraints, this simple method can achieve good results on several large-scale benchmarks. Further experiments show that our method can generalize well to novel scenes and is robust to inaccurate bounding boxes.

View on arXiv
Comments on this paper