ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.05299
23
46

Distributionally Robust Semi-Supervised Learning for People-Centric Sensing

12 November 2018
Kaixuan Chen
Lina Yao
Dalin Zhang
Xiaojun Chang
Guodong Long
Sen Wang
    OOD
ArXivPDFHTML
Abstract

Semi-supervised learning is crucial for alleviating labelling burdens in people-centric sensing. However, human-generated data inherently suffer from distribution shift in semi-supervised learning due to the diverse biological conditions and behavior patterns of humans. To address this problem, we propose a generic distributionally robust model for semi-supervised learning on distributionally shifted data. Considering both the discrepancy and the consistency between the labeled data and the unlabeled data, we learn the latent features that reduce person-specific discrepancy and preserve task-specific consistency. We evaluate our model in a variety of people-centric recognition tasks on real-world datasets, including intention recognition, activity recognition, muscular movement recognition and gesture recognition. The experiment results demonstrate that the proposed model outperforms the state-of-the-art methods.

View on arXiv
Comments on this paper