ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.06341
14
39

Spatio-temporal Stacked LSTM for Temperature Prediction in Weather Forecasting

15 November 2018
Zahra Karevan
Johan A. K. Suykens
ArXivPDFHTML
Abstract

Long Short-Term Memory (LSTM) is a well-known method used widely on sequence learning and time series prediction. In this paper we deployed stacked LSTM model in an application of weather forecasting. We propose a 2-layer spatio-temporal stacked LSTM model which consists of independent LSTM models per location in the first LSTM layer. Subsequently, the input of the second LSTM layer is formed based on the combination of the hidden states of the first layer LSTM models. The experiments show that by utilizing the spatial information the prediction performance of the stacked LSTM model improves in most of the cases.

View on arXiv
Comments on this paper