ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.06396
14
2

Asynchronous Stochastic Composition Optimization with Variance Reduction

15 November 2018
Shuheng Shen
Linli Xu
Jingchang Liu
Junliang Guo
Qing Ling
ArXivPDFHTML
Abstract

Composition optimization has drawn a lot of attention in a wide variety of machine learning domains from risk management to reinforcement learning. Existing methods solving the composition optimization problem often work in a sequential and single-machine manner, which limits their applications in large-scale problems. To address this issue, this paper proposes two asynchronous parallel variance reduced stochastic compositional gradient (AsyVRSC) algorithms that are suitable to handle large-scale data sets. The two algorithms are AsyVRSC-Shared for the shared-memory architecture and AsyVRSC-Distributed for the master-worker architecture. The embedded variance reduction techniques enable the algorithms to achieve linear convergence rates. Furthermore, AsyVRSC-Shared and AsyVRSC-Distributed enjoy provable linear speedup, when the time delays are bounded by the data dimensionality or the sparsity ratio of the partial gradients, respectively. Extensive experiments are conducted to verify the effectiveness of the proposed algorithms.

View on arXiv
Comments on this paper