ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.06846
12
12

Improving Fingerprint Pore Detection with a Small FCN

14 November 2018
Gabriel Dahia
Maurício Pamplona Segundo
ArXivPDFHTML
Abstract

In this work, we investigate if previously proposed CNNs for fingerprint pore detection overestimate the number of required model parameters for this task. We show that this is indeed the case by proposing a fully convolutional neural network that has significantly fewer parameters. We evaluate this model using a rigorous and reproducible protocol, which was, prior to our work, not available to the community. Using our protocol, we show that the proposed model, when combined with post-processing, performs better than previous methods, albeit being much more efficient. All our code is available at https://github.com/gdahia/fingerprint-pore-detection

View on arXiv
Comments on this paper