ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07062
85
31
v1v2 (latest)

The Full Spectrum of Deep Net Hessians At Scale: Dynamics with Sample Size

16 November 2018
Vardan Papyan
ArXiv (abs)PDFHTML
Abstract

Previous works observed the spectrum of the Hessian of the training loss of deep neural networks. However, the networks considered were of minuscule size. We apply state-of-the-art tools in modern high-dimensional numerical linear algebra to approximate the spectrum of the Hessian of deep nets with tens of millions of parameters. Our results corroborate previous findings, based on small-scale networks, that the Hessian exhibits 'spiked' behavior, with several outliers isolated from a continuous bulk. However we find that the bulk does not follow a simple Marchenko-Pastur distribution, as previously suggested, but rather a heavier-tailed distribution. Finally, we document the dynamics of the outliers and the bulk with varying sample size.

View on arXiv
Comments on this paper