ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10211
16
7

Multi-task Learning over Graph Structures

26 November 2018
Pengfei Liu
Jie Fu
Yue Dong
Xipeng Qiu
Jackie C.K. Cheung
    GNN
ArXivPDFHTML
Abstract

We present two architectures for multi-task learning with neural sequence models. Our approach allows the relationships between different tasks to be learned dynamically, rather than using an ad-hoc pre-defined structure as in previous work. We adopt the idea from message-passing graph neural networks and propose a general \textbf{graph multi-task learning} framework in which different tasks can communicate with each other in an effective and interpretable way. We conduct extensive experiments in text classification and sequence labeling to evaluate our approach on multi-task learning and transfer learning. The empirical results show that our models not only outperform competitive baselines but also learn interpretable and transferable patterns across tasks.

View on arXiv
Comments on this paper