ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10779
12
1

Tackling Early Sparse Gradients in Softmax Activation Using Leaky Squared Euclidean Distance

27 November 2018
Wei Shen
Rujie Liu
ArXivPDFHTML
Abstract

Softmax activation is commonly used to output the probability distribution over categories based on certain distance metric. In scenarios like one-shot learning, the distance metric is often chosen to be squared Euclidean distance between the query sample and the category prototype. This practice works well in most time. However, we find that choosing squared Euclidean distance may cause distance explosion leading gradients to be extremely sparse in the early stage of back propagation. We term this phenomena as the early sparse gradients problem. Though it doesn't deteriorate the convergence of the model, it may set up a barrier to further model improvement. To tackle this problem, we propose to use leaky squared Euclidean distance to impose a restriction on distances. In this way, we can avoid distance explosion and increase the magnitude of gradients. Extensive experiments are conducted on Omniglot and miniImageNet datasets. We show that using leaky squared Euclidean distance can improve one-shot classification accuracy on both datasets.

View on arXiv
Comments on this paper