ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.11441
11
1

Trajectory-based Learning for Ball-in-Maze Games

28 November 2018
S. Paul
J. Baar
ArXivPDFHTML
Abstract

Deep Reinforcement Learning has shown tremendous success in solving several games and tasks in robotics. However, unlike humans, it generally requires a lot of training instances. Trajectories imitating to solve the task at hand can help to increase sample-efficiency of deep RL methods. In this paper, we present a simple approach to use such trajectories, applied to the challenging Ball-in-Maze Games, recently introduced in the literature. We show that in spite of not using human-generated trajectories and just using the simulator as a model to generate a limited number of trajectories, we can get a speed-up of about 2-3x in the learning process. We also discuss some challenges we observed while using trajectory-based learning for very sparse reward functions.

View on arXiv
Comments on this paper