ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12436
22
221

Freeform Diffractive Metagrating Design Based on Generative Adversarial Networks

29 November 2018
Jiaqi Jiang
David Sell
Stephan Hoyer
Jason Hickey
Jianji Yang
Jonathan A. Fan
ArXivPDFHTML
Abstract

A key challenge in metasurface design is the development of algorithms that can effectively and efficiently produce high performance devices. Design methods based on iterative optimization can push the performance limits of metasurfaces, but they require extensive computational resources that limit their implementation to small numbers of microscale devices. We show that generative neural networks can train from images of periodic, topology-optimized metagratings to produce high-efficiency, topologically complex devices operating over a broad range of deflection angles and wavelengths. Further iterative optimization of these designs yields devices with enhanced robustness and efficiencies, and these devices can be utilized as additional training data for network refinement. In this manner, generative networks can be trained, with a onetime computation cost, and used as a design tool to facilitate the production of near-optimal, topologically-complex device designs. We envision that such data-driven design methodologies can apply to other physical sciences domains that require the design of functional elements operating across a wide parameter space.

View on arXiv
Comments on this paper