ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02335
20
1

Layer Flexible Adaptive Computational Time

6 December 2018
Lida Zhang
Abdolghani Ebrahimi
Diego Klabjan
    AI4CE
ArXivPDFHTML
Abstract

Deep recurrent neural networks perform well on sequence data and are the model of choice. However, it is a daunting task to decide the structure of the networks, i.e. the number of layers, especially considering different computational needs of a sequence. We propose a layer flexible recurrent neural network with adaptive computation time, and expand it to a sequence to sequence model. Different from the adaptive computation time model, our model has a dynamic number of transmission states which vary by step and sequence. We evaluate the model on a financial data set and Wikipedia language modeling. Experimental results show the performance improvement of 7\% to 12\% and indicate the model's ability to dynamically change the number of layers along with the computational steps.

View on arXiv
Comments on this paper