ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02510
13
266

ForensicTransfer: Weakly-supervised Domain Adaptation for Forgery Detection

6 December 2018
D. Cozzolino
Justus Thies
Andreas Rossler
Christian Riess
Matthias Nießner
L. Verdoliva
    AAML
ArXivPDFHTML
Abstract

Distinguishing manipulated from real images is becoming increasingly difficult as new sophisticated image forgery approaches come out by the day. Naive classification approaches based on Convolutional Neural Networks (CNNs) show excellent performance in detecting image manipulations when they are trained on a specific forgery method. However, on examples from unseen manipulation approaches, their performance drops significantly. To address this limitation in transferability, we introduce Forensic-Transfer (FT). We devise a learning-based forensic detector which adapts well to new domains, i.e., novel manipulation methods and can handle scenarios where only a handful of fake examples are available during training. To this end, we learn a forensic embedding based on a novel autoencoder-based architecture that can be used to distinguish between real and fake imagery. The learned embedding acts as a form of anomaly detector; namely, an image manipulated from an unseen method will be detected as fake provided it maps sufficiently far away from the cluster of real images. Comparing to prior works, FT shows significant improvements in transferability, which we demonstrate in a series of experiments on cutting-edge benchmarks. For instance, on unseen examples, we achieve up to 85% in terms of accuracy, and with only a handful of seen examples, our performance already reaches around 95%.

View on arXiv
Comments on this paper