ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02626
63
16
v1v2 (latest)

Guided Zoom: Questioning Network Evidence for Fine-grained Classification

6 December 2018
Sarah Adel Bargal
Andrea Zunino
Vitali Petsiuk
Jianming Zhang
Kate Saenko
Vittorio Murino
Stan Sclaroff
ArXiv (abs)PDFHTML
Abstract

We propose Guided Zoom, an approach that utilizes spatial grounding of a model's decision to make more informed predictions. It does so by making sure the model has "the right reasons" for a prediction, defined as reasons that are coherent with those used to make similar correct decisions at training time. The reason/evidence upon which a deep convolutional neural network makes a prediction is defined to be the spatial grounding, in the pixel space, for a specific class conditional probability in the model output. Guided Zoom examines how reasonable such evidence is for each of the top-k predicted classes, rather than solely trusting the top-1 prediction. We show that Guided Zoom improves the classification accuracy of a deep convolutional neural network model and obtains state-of-the-art results on three fine-grained classification benchmark datasets.

View on arXiv
Comments on this paper