Uniform bounds for robust mean estimators

This paper is devoted to the estimators of the mean that provide strong non-asymptotic guarantees under minimal assumptions on the underlying distribution. The main ideas behind proposed techniques are based on bridging the notions of symmetry and robustness. We show that existing methods, such as median-of-means and Catoni's estimators, can often be viewed as special cases of our construction. The main contribution of the paper is the proof of uniform bounds for the deviations of the stochastic process defined by proposed estimators. Moreover, we extend our results to the case of adversarial contamination where a constant fraction of the observations is arbitrarily corrupted. Finally, we apply our methods to the problem of robust multivariate mean estimation and show that obtained inequalities achieve optimal dependence on the proportion of corrupted samples.
View on arXiv