ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.03599
11
79

Fast convergence rates of deep neural networks for classification

10 December 2018
Yongdai Kim
Ilsang Ohn
Dongha Kim
    3DH
    3DV
ArXivPDFHTML
Abstract

We derive the fast convergence rates of a deep neural network (DNN) classifier with the rectified linear unit (ReLU) activation function learned using the hinge loss. We consider three cases for a true model: (1) a smooth decision boundary, (2) smooth conditional class probability, and (3) the margin condition (i.e., the probability of inputs near the decision boundary is small). We show that the DNN classifier learned using the hinge loss achieves fast rate convergences for all three cases provided that the architecture (i.e., the number of layers, number of nodes and sparsity). is carefully selected. An important implication is that DNN architectures are very flexible for use in various cases without much modification. In addition, we consider a DNN classifier learned by minimizing the cross-entropy, and show that the DNN classifier achieves a fast convergence rate under the condition that the conditional class probabilities of most data are sufficiently close to either 1 or zero. This assumption is not unusual for image recognition because human beings are extremely good at recognizing most images. To confirm our theoretical explanation, we present the results of a small numerical study conducted to compare the hinge loss and cross-entropy.

View on arXiv
Comments on this paper