66
2

Model-Based Learning of Turbulent Flows using Mobile Robots

Abstract

We consider the problem of model-based learning of turbulent flows using mobile robots. Specifically, we use empirical data to improve on numerical solutions obtained from Reynolds-Averaged Navier Stokes (RANS) models. RANS models are computationally efficient but rely on assumptions that require experimental validation. Here we construct statistical models of the flow properties using Gaussian Processes (GPs) and rely on the numerical solutions to inform their mean. Utilizing Bayesian inference, we incorporate measurements of the time-averaged velocity and turbulent intensity into these GPs. We account for model ambiguity and parameter uncertainty, via hierarchical model selection, and for measurement noise by systematically incorporating it in the GPs. To collect the measurements, we control a custom-built mobile robot through a sequence of waypoints that maximize the information content of the measurements. The end result is a posterior distribution of the flow field that better approximates the real flow and quantifies the uncertainty in its properties. We experimentally demonstrate a considerable improvement in the prediction of these properties compared to numerical solutions.

View on arXiv
Comments on this paper