ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.04180
15
3

Channel selection using Gumbel Softmax

11 December 2018
Charles Herrmann
Richard Strong Bowen
Ramin Zabih
ArXivPDFHTML
Abstract

Important applications such as mobile computing require reducing the computational costs of neural network inference. Ideally, applications would specify their preferred tradeoff between accuracy and speed, and the network would optimize this end-to-end, using classification error to remove parts of the network. Increasing speed can be done either during training - e.g., pruning filters - or during inference - e.g., conditionally executing a subset of the layers. We propose a single end-to-end framework that can improve inference efficiency in both settings. We use a combination of batch activation loss and classification loss, and Gumbel reparameterization to learn network structure. We train end-to-end, and the same technique supports pruning as well as conditional computation. We obtain promising experimental results for ImageNet classification with ResNet (45-52% less computation).

View on arXiv
Comments on this paper