ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.04369
19
12

Variational Bayesian Weighted Complex Network Reconstruction

11 December 2018
Shuang Xu
Chunxia Zhang
Pei Wang
Jiangshe Zhang
ArXivPDFHTML
Abstract

Complex network reconstruction is a hot topic in many fields. Currently, the most popular data-driven reconstruction framework is based on lasso. However, it is found that, in the presence of noise, lasso loses efficiency for weighted networks. This paper builds a new framework to cope with this problem. The key idea is to employ a series of linear regression problems to model the relationship between network nodes, and then to use an efficient variational Bayesian algorithm to infer the unknown coefficients. The numerical experiments conducted on both synthetic and real data demonstrate that the new method outperforms lasso with regard to both reconstruction accuracy and running speed.

View on arXiv
Comments on this paper