ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.04428
11
2

Efficient learning of smooth probability functions from Bernoulli tests with guarantees

11 December 2018
Paul Rolland
Ali Kavis
Alex Immer
Adish Singla
V. Cevher
ArXivPDFHTML
Abstract

We study the fundamental problem of learning an unknown, smooth probability function via pointwise Bernoulli tests. We provide a scalable algorithm for efficiently solving this problem with rigorous guarantees. In particular, we prove the convergence rate of our posterior update rule to the true probability function in L2-norm. Moreover, we allow the Bernoulli tests to depend on contextual features and provide a modified inference engine with provable guarantees for this novel setting. Numerical results show that the empirical convergence rates match the theory, and illustrate the superiority of our approach in handling contextual features over the state-of-the-art.

View on arXiv
Comments on this paper