ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.04778
11
3

Bridging the Generalization Gap: Training Robust Models on Confounded Biological Data

12 December 2018
Tzu-Yu Liu
A. Kannan
Adam Drake
Marvin Bertin
Nathan Wan
    FedML
    OOD
    CML
    AI4CE
ArXivPDFHTML
Abstract

Statistical learning on biological data can be challenging due to confounding variables in sample collection and processing. Confounders can cause models to generalize poorly and result in inaccurate prediction performance metrics if models are not validated thoroughly. In this paper, we propose methods to control for confounding factors and further improve prediction performance. We introduce OrthoNormal basis construction In cOnfounding factor Normalization (ONION) to remove confounding covariates and use the Domain-Adversarial Neural Network (DANN) to penalize models for encoding confounder information. We apply the proposed methods to simulated and empirical patient data and show significant improvements in generalization.

View on arXiv
Comments on this paper