ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.07067
36
20

Probabilistic Attribute Tree in Convolutional Neural Networks for Facial Expression Recognition

17 December 2018
Jie Cai
Zibo Meng
Ahmed-Shehab Khan
Zhiyuan Li
James O'Reilly
Yan Tong
    CVBM
ArXiv (abs)PDFHTML
Abstract

In this paper, we proposed a novel Probabilistic Attribute Tree-CNN (PAT-CNN) to explicitly deal with the large intra-class variations caused by identity-related attributes, e.g., age, race, and gender. Specifically, a novel PAT module with an associated PAT loss was proposed to learn features in a hierarchical tree structure organized according to attributes, where the final features are less affected by the attributes. Then, expression-related features are extracted from leaf nodes. Samples are probabilistically assigned to tree nodes at different levels such that expression-related features can be learned from all samples weighted by probabilities. We further proposed a semi-supervised strategy to learn the PAT-CNN from limited attribute-annotated samples to make the best use of available data. Experimental results on five facial expression datasets have demonstrated that the proposed PAT-CNN outperforms the baseline models by explicitly modeling attributes. More impressively, the PAT-CNN using a single model achieves the best performance for faces in the wild on the SFEW dataset, compared with the state-of-the-art methods using an ensemble of hundreds of CNNs.

View on arXiv
Comments on this paper