ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.07152
61
3
v1v2v3v4v5v6v7 (latest)

MatRox: A Model-Based Algorithm with an Efficient Storage Format for Parallel HSS-Structured Matrix Approximations

18 December 2018
Bangtian Liu
Kazem Cheshmi
Saeed Soori
M. Strout
ArXiv (abs)PDFHTML
Abstract

We present MatRox, a novel model-based algorithm and implementation of Hierarchically Semi-Separable (HSS) matrix computations on parallel architectures. MatRox uses a novel storage format to improve data locality and scalability of HSS matrix-matrix multiplications on shared memory multicore processors. We build a performance model for HSS matrix-matrix multiplications. Based on the performance model, a mixed-rank heuristic is introduced to find an optimal HSS-tree depth for a faster HSS matrix evaluation. Uniform sampling is used to improve the performance of HSS compression. MatRox outperforms state-of-the-art HSS matrix multiplication codes, GOFMM and STRUMPACK, with average speedups of 2.8x and 6.1x respectively on target multicore processors.

View on arXiv
Comments on this paper